

Cross-lingual Knowledge Projection Using Machine Translation and Target-side Knowledge Base Completion

Naoki Otani¹ Hirokazu Kiyomaru² Daisuke Kawahara² Sadao Kurohashi²

¹Carnegie Mellon University, ²Kyoto University

Translated 18,747 facts (tuples) of commonsense knowledge with high precision.
Addressed the problem of projection ambiguity by combining MT and KBC.

Existing
Japanese facts
69,902

Background - Commonsense Knowledge

Things that every person should know.

Important to understand human languages.

ConceptNet (Speer et al., 2017)

The largest multi-lingual knowledge base of commonsense

- Tuples (facts) of commonsense (bat, *CapableOf*, fly)
- Nodes are represented in undisambiguated words/phrases

Problem – Large gap between English and other languages

Unique English facts: 2,828,394

Unique Japanese facts: 69,902 (~2.5%)

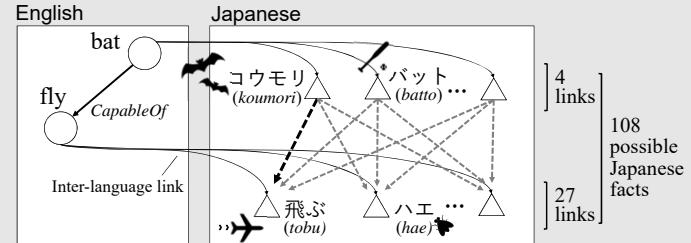
Problem Setting f^s : fact in English, f_1^t, \dots, f_n^t : projection candidates in a target language

Goal: find the most appropriate fact by $\hat{f}^t = \text{argmax}_i h(f_i^t | f^s)$

Task

Projecting English facts into other languages.

Challenge: projection of commonsense is ambiguous.



Our Approach – Combining Machine Translation and Target-side Knowledge Base Completion

Machine Translation (MT)

Calculating trans. probs. with an off-the-shelf neural MT model

Implementation: Iamtrm (Graham, 2015) + BPE (Sennrich et al., 2016)

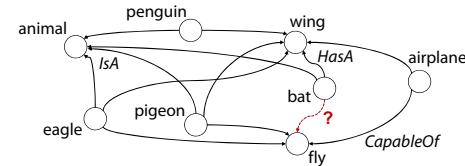
$$\begin{aligned} x_{MT}((\text{koumori}, \text{CapableOf}, \text{tobu}) | (\text{bat}, \text{CapableOf}, \text{fly})) \\ = (P(\text{koumori} \text{ wa } \text{tobu} \text{ koto ga dekiru} . | \text{A bat can fly .}))^{\frac{1}{7}} \\ = (P(\text{koumori} | \text{A bat} \dots) \times P(\text{wa} | \text{koumori}, \text{A bat} \dots))^{\frac{1}{7}} \\ \times \dots \times P(\text{.} | \text{dekiru}, \dots, \text{koumori}, \text{A bat} \dots) \end{aligned}$$

★ Converting facts into sentences based on rules

Relation	e_1, e_2	English	Japanese	Chinese
AtLocation	NP, NP	You are likely to find e_1 in e_2 .	e_2 de e_1 wo miru koto ga dekiru .	Ni keyi zai e_2 zhaodao e_1 .
CapableOf	NP, VP	e_1 can e_2 .	e_1 wa e_2 koto ga dekiru .	e_1 hui e_2
MadeOf	NP, NP	e_1 is made of e_2 .	e_1 wa e_2 kara tsukurareru .	e_1 ke yi yong e_2 zhi cheng .

Knowledge Base Completion (KBC)

Evaluate the plausibility of a target-side fact based on existing information in a knowledge base.



Bilinear model (Li et al., 2017)

$$x_{KBC}((\text{koumori}, \text{CapableOf}, \text{tobu})) = \sigma(\mathbf{u}_{\text{koumori}}^T \mathbf{W} \text{CapableOf} \mathbf{u}_{\text{tobu}})$$

Node vector: $\mathbf{u} = \tanh(\mathbf{Wv} + \mathbf{b}) \in \mathbb{R}^d$, $\mathbf{v} \in \mathbb{R}^{d'}$: word vector, \mathbf{W}, \mathbf{b} : parameters

Relation matrix: $\mathbf{W}^{d \times d}$

The model parameters (\mathbf{W}, \mathbf{b}) are learned to minimize a cross-entropy loss on training facts.

2. Multi-layer Perceptron (MLP)

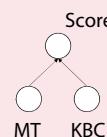
$$\begin{aligned} h(x) &= w_r^{(2)T} z(x) + b_r^{(2)} \\ z(x) &= \tanh(W^{(1)T} x + b^{(1)}) \\ W^{(1)} &\in \mathbb{R}^{2 \times c}, b^{(1)} \in \mathbb{R}^c, w^{(2)} \in \mathbb{R}^c, b_r^{(2)} \in \mathbb{R} \end{aligned}$$

Combination – Two Simple Methods

1. Linear transformation (LIN)

$$h(x) = w_r^T x + b_r, w_r \in \mathbb{R}^2, b_r \in \mathbb{R}$$

$(x = (x_{MT}, x_{KBC}))$: scores, r : relation)



Experiments

Data source: ConceptNet 5.5.0 (Speer et al., 2017)

Two evaluation sets:

- AUTO: large, automatically collected fact alignments
- MANUAL: small, manually verified fact alignments

Evaluation metrics:

- Mean reciprocal rank (MRR), top-k accuracy (Acc@k)

Baselines:

- PPMI / MT / KBC / MTransE (Chen et al., 2017)

Our methods: LIN / MLP

Rapidly Acquiring Japanese Commonsense with the Proposed Method + Crowdsourcing

1. We projected 10k English facts covering 20 relation types into Japanese
2. To further improve the quality, we verified the top-10 predictions of MLP using crowdsourcing
 - Screening top-10 is fast. – 838 workers and 25 hours

